
Shalini J. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 5) May 2016, pp.62-67

www.ijera.com 62 | P a g e

Efficient Implementation of Proof of Retrievability (OPOR) In

Cloud Computing With Resource Constrained Devices

Shalini J and Dr. K. Raghuveer
Department of Information Science and Engineering, N.I.E Mysore

Karnataka, India

ABSTRACT
Cloud computing has become an integral part of IT services, storing the application softwares and databases in

large centralized shared data servers. Since it’s a shared platform, the data and services may not be fully trust

worthy. In this work, we have implemented an efficient security model that ensures the data integrity of stored

data in cloud servers. The computational load of data verification linearly grows with the complexity of the

security model and this poses a serious problem at the resource constrained user’s end. Therefore to tackle this

problem we have implemented a new cloud storage scheme which ensures proof of retrivebility (OPoR) at a

third party cloud audit server to pre-process data before uploading into cloud storage server.

I. INTRODUCTION

Cloud Computing has been envisioned as

the next generation architecture of the IT enterprise

due to its long list of unprecedented advantages: on-

demand self- service, ubiquitous network access,

location-independent resource pooling, rapid resource

elasticity[5, 6, 7, 10], and usage- based pricing. In

particular, the ever cheaper and more powerful

processors, together with the “software as a service”

(SaaS) computing architecture, are transforming data

centers into pools of computing service on a huge

scale.

Although having appealing advantages as a

promising service platform for the Internet, this new

data storage paradigm in “Cloud” brings many

challenging issues which have profound influence on

the usability, reliability, scalability, security, and

performance of the overall system. One of the biggest

concerns with remote data storage is that of data

integrity verification at untrusted servers. For

instance, the storage service provider may decide to

hide such data loss incidents as the Byzantine failure

from the clients to maintain a reputation. What is

more serious is that for saving money and storage

space the service provider might deliberately discard

rarely accessed data files which belong to an ordinary

client. Considering the large size of the outsourced

electronic data and the client’s constrained resource

capability, the core of the problem can be generalized

as how can the client find an efficient way to perform

periodical integrity verification without the local

copy of data files.

Cloud Computing moves the application

soft- ware and databases to the centralized large data

centers [11, 14, 16, 19], where the management of the

data and services may not be fully trustworthy. In this

work, we study the problem of ensuring the integrity

of data storage in Cloud Computing. To reduce the

computational cost at user side during the integrity

verification of their data, the notion of public

verifiability has been proposed. However, the

challenge is that the computational burden is too

huge for the users with resource-constrained devices

to compute the public authentication tags of file

blocks. To tackle the challenge, we propose OPoR, a

new cloud storage scheme involving a cloud storage

server and a cloud audit server, where the latter is

assumed to be semi-honest.

II. RELATED WORK
Provable Data Possesion:

In paper [1] author introduced a model for

provable data possession (PDP) that allows a client

that has stored data at an untrusted server to verify

that the server possesses the original data without

retrieving it. The model generates probabilistic proofs

of possession by sampling random sets of blocks

from the server, which drastically reduces I/O costs.

The client maintains a constant amount of metadata

to verify the proof. The challenge/response protocol

transmits a small, constant amount of data, which

minimizes network communication. Thus, the PDP

model for remote data checking supports large data

sets in widely-distributed storage systems. We

present two provably-secure PDP schemes that are

more efficient than previous solutions, even when

compared with schemes that achieve weaker

guarantees. In particular, the overhead at the server is

low (or even constant), as opposed to linear in the

size of the data. Experiments using our

implementation verify the practicality of PDP and

reveal that the performance of PDP is bounded by

disk I/O and not by cryptographic computation.

RESEARCH ARTICLE OPEN ACCESS

Shalini J. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 5) May 2016, pp.62-67

www.ijera.com 63 | P a g e

Author focused on the problem of verifying

if an untrusted server stores a client’s data. Our

solutions for PDP fit this model: They incur a low (or

even constant) overhead at the server and require a

small, constant amount of communication per

challenge. Key components of our schemes are the

homomorphic verifiable tags.

Proofs of retrievability:

In paper [2], authors define and explore

proofs of retrievability (PORs). A POR scheme

enables an archive or back-up service (prover) to

produce a concise proof that a user (verifier) can

retrieve a target file F, that is, that the archive retains

and reliably transmits file data sufficient for the user

to recover F in its entirety. A POR may be viewed as

a kind of cryptographic proof of knowledge (POK),

but one specially designed to handle a large file (or

bit string) F. We explore POR protocols here in

which the communication costs, number of memory

accesses for the prover, and storage requirements of

the user (verifier) are small parameters essentially

independent of the length of F. In addition to

proposing new, practical POR constructions, we

explore implementation considerations and

optimizations that bear on previously explored,

related schemes. In a POR, unlike a POK, neither the

prover nor the verifier need actually have knowledge

of F. PORs give rise to a new and unusual security

definition whose formulation is another contribution

of our work. We view PORs as an important tool for

semi-trusted online archives. Existing cryptographic

techniques help users ensure the privacy and integrity

of files they retrieve. It is also natural, however, for

users to want to verify that archives do not delete or

modify files prior to retrieval. The goal of a POR is to

accomplish these checks without users having to

download the files themselves. A POR can also

provide quality-of-service guarantees, i.e., show that

a file is retrievable within a certain time bound.

In paper [12], authors proposed a secure cloud

storage system supporting privacy-preserving public

auditing. We further extend our result to enable the

TPA to perform audits for multiple users

simultaneously and efficiently. Extensive security

and performance analysis show the proposed

schemes are provably secure and highly efficient.

Our preliminary experiment conducted on Amazon

EC2 instance further demonstrates the fast

performance of the design.

Using Cloud Storage, users can remotely

store their data and enjoy the on-demand high quality

applications and services from a shared pool of

configurable computing resources, without the

burden of local data storage and maintenance.

However, the fact that users no longer have physical

possession of the outsourced data makes the data

integrity protection in Cloud Computing a formidable

task, especially for users with constrained computing

resources.

Moreover, users should be able to just use

the cloud storage as if it is local, without worrying

about the need to verify its integrity. Thus, enabling

public auditability for cloud storage is of critical

importance so that users can resort to a third party

auditor (TPA) to check the integrity of outsourced

data and be worry-free. To securely introduce an

effective TPA, the auditing process should bring in

no new vulnerabilities towards user data privacy, and

introduce no additional online burden to user.

Dynamic audit services for integrity verification:

 In paper [13], authors proposed a dynamic

audit service for verifying the integrity of untrusted

and outsourced storage. Our audit service,

constructed based on the techniques, fragment

structure, random sampling and index-hash table, can

support provable updates to outsourced data, and

timely abnormal detection. In addition, we propose

an efficient approach based on probabilistic query

and periodic verification for improving the

performance of audit services. Our experimental

results not only validate the effectiveness of our

approaches, but also show our audit system has a

lower computation overhead, as well as a shorter

extra storage for audit metadata.

In this work, we introduce a dynamic audit

service for integrity verification of untrusted and

outsourced storages. Our audit system, based on a

novel audit system architecture, can support dynamic

data operations and timely abnormal detection with

the help of several effective techniques, such as

fragment structure, random sampling, and index-hash

table. Furthermore, we propose an efficient approach

based on probabilistic query and periodic verification

for improving the performance of audit services. A

proof of concept prototype is also implemented to

evaluate the feasibility and viability of our proposed

approaches. Our experimental results not only

validate the effectiveness of our approaches, but also

show our system has a lower computation cost, as

well as a shorter extra storage for integrity

verification.

Data Dynamics for Storage Security:

Cloud Computing has been envisioned as

the next-generation architecture of IT Enterprise [24].

It moves the application software and databases to

the centralized large data centers, where the

management of the data and services may not be fully

trustworthy. This unique paradigm brings about many

new security challenges, which have not been well

understood. This work studies the problem of

ensuring the integrity of data storage in Cloud

Computing. In particular, we consider the task of

allowing a third party auditor (TPA), on behalf of the

Shalini J. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 5) May 2016, pp.62-67

www.ijera.com 64 | P a g e

cloud client, to verify the integrity of the dynamic

data stored in the cloud. The introduction of TPA

eliminates the involvement of client through the

auditing of whether his data stored in the cloud is

indeed intact, which can be important in achieving

economies of scale for Cloud Computing.

The support for data dynamics via the most

general forms of data operation, such as block

modification, insertion and deletion, is also a

significant step to- ward practicality, since services in

Cloud Computing are not limited to archive or

backup data only. While prior works on ensuring

remote data integrity often lacks the support of either

public verifiability or dynamic data operations, this

paper achieves both. We first identify the difficulties

and potential security problems of direct extensions

with fully dynamic data updates from prior works

and then show how to construct an elegant

verification scheme for seamless integration of these

two salient features in our protocol design. In

particular, to achieve efficient data dynamics, we

improve the Proof of Retrievability model [1] by

manipulating the classic Merkle Hash Tree (MHT)

construction for block tag authentication. Extensive

security and performance analysis show that the

proposed scheme is highly efficient and provably

secure.

III. PROBLEM DEFINITION
Data storage paradigm in “Cloud” brings

many challenging issues which have profound

influence on the usability, reliability, scalability,

security, and performance of the overall system.

One of the biggest concerns with remote

data storage is that of data integrity verification at

untrusted servers.

For instance, the storage service provider

may decide to hide such data loss incidents as the

Byzantine failure from the clients to maintain a

reputation. What is more serious is that for saving

money and storage space the service provider might

deliberately discard rarely accessed data files which

belong to an ordinary client.

Considering the large size of the outsourced

electronic data and the client’s constrained resource

capability, the core of the problem can be generalized

as how can the client find an efficient way to perform

periodical integrity verification without the local

copy of data files.

IV. Proposed Solution
We present an efficient verification scheme

for ensuring remote data integrity in cloud storage.

The proposed scheme is proved secure against reset

attacks in the strengthened security model while

supporting efficient public verifiability and dynamic

data operations simultaneously proposed a dynamic

version of the prior PDP scheme. However, the

system imposes a priori bound on the number of

queries and do not support fully dynamic data

operations. In [22], Wang et al. considered dynamic

data storage in distributed scenario, and the proposed

challenge-response protocol can both determine the

data correctness and locate possible errors. Similar to

[11], they only considered partial support for

dynamic data operation. In [21], they also considered

how to save storage space by introducing

reduplication in cloud storage. Recently, Zhu et al.

[19] introduced the provable data possession problem

in cooperative cloud service providers and designed a

new remote integrity checking system.

Our proposed method consists of following stages:

1. Learning and Analysis phase.

2. Design and Implementation phase.

3. Testing Phase.

System Architecture

System architecture is the conceptual design

that defines the structure and behavior of a system.

An architecture description is a formal description of

a system, organized in a way that supports reasoning

about the structural properties of the system. It

defines the system components or building blocks

and provides a plan from which products can be

procured, and systems developed, that will work

together to implement the overall system.

Key Generation

Signature

Generation
Verifier

Storage Server

Challenge Response

System

Data Owner

TPA

Cloud Server

The system has 3 sub systems:

Data Owner: This module will implement

the functionality of generating the key for encrypting

the file.

Cloud Server: It stores the files in the cloud

& responds to integrity challenge request from the

TPA.

TPA: Signed hash content is been sent.

Encrypted file is sent to cloud server. TPA verifies

the integrity by posing challenge request to the cloud

server & then checks the validity. It raises alert to the

data owner if the integrity has failed.

Classes Designed for the system

A class diagram in the Unified Modeling Language

(UML) is a type of static structure diagram that

http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Behavior
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Unified_Modeling_Language

Shalini J. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 5) May 2016, pp.62-67

www.ijera.com 65 | P a g e

describes the structure of a system by showing the

system's classes, their attributes, and the relationships

between the classes.

+dataOwner()

+cloudServer()

+TPA()

Main

+generateKey()

Data Owner

+responseChallenge()

+storeFile()

+verifyIntegrity()

Cloud Server

+verifyKey()

+signKey()

+uploadFile()

+encryptFile()

+responseChallenge()

+verifyHashGeneration()

+verifyIntegrity()

+verifyResponse()

+integrityResult()

TPA

1

0..*

1

0..*

1

0..*

The class diagram has the following classes

Main class: This class has operations called data

owner, cloud server and TPA.

Data Owner: This class has operations called

generate Key.

TPA: This class has operations called verify Key,

sign key, upload file, encrypt file, response challenge,

verify hash generation, verify integrity and verify

response, integrity result.

Cloud Server: This class has operations called

response challenge, store file and verify integrity.

Basic Structure of Authentication Scheme Employed

in our Security Model

Data Integrity- Assumptions:

1) Mechanism in place to securely share data

between Data Owner and Clients.

2) The data could be the public key of the DO or

collision resistant hash data.

The conventional data authenticity

verification poses huge computation overload,

because it has an exponential storage overhead as

distinct signatures needs to store with each tuple.

There are two integrity schemes- Probabilistic and

Deterministic. In our implementation we follow

deterministic approach that is generally based on

Authenticated Data Structures (ADS). It’s a

technique in which some kind of authentication data

is stored on the DSP. On the client’s query, a DSP

returns the queried data along with some extra

authentication data that is then used by the client to

verify the authenticity of returned data.

Merkel Hash Tree:

Security of this signature scheme depends

on the security of the hash function.

• Only one hash needs to be maintained or shared

securely.

• To authenticate any data block only log2 n hashes

need to be transferred, where n denotes total number

of data blocks.

• In case of integrity checking of a continuous range

of blocks, even less than log2 n hashes need to be

transferred.

𝐻 𝑑 =

𝑕(𝑕(𝑑. 𝑣𝑎𝑙)||𝑕(𝑑. 𝑛𝑎𝑚𝑒))
𝑕(𝑕(𝑑. 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)||𝑕(𝑑. 𝑡𝑎𝑔𝑛𝑎𝑚𝑒))

𝐻(𝑐𝑕𝑖𝑙𝑑(1, 𝑑)|| … ||𝐻(𝑐𝑕𝑖𝑙𝑑(𝑁, 𝑑))

Where “||" denotes the concatenation function.

V. RESULTS
The key contributions of our project are

efficient public verifiability with enhanced security

model, while preventing reset attacks and fast,

simultaneous bidirectional dynamic data operations.

This is achieved by outsourcing all the

computationally expensive tasks like data

verification, security authentication from client end to

a third party Cloud Audit Service (CAS).

 Steps implemented in our scheme:

1) Setup phase: It takes as input security parameter

(𝐼𝑘) and returns public parameter (𝑝𝑘) and private

parameter (𝑠𝑘).

2) Data Upload phase: there are two sub-stages in this

algorithm

 Client uploads the data file (𝐹) to a Cloud

Audit Server (CAS), where 𝐹 is an ordered collection

of blocks 𝑀𝑖 and is encoded using rate-𝜌 error

correcting codes.

 In the second stage the data file (𝐹) is re-

uploaded to the Cloud Storage Service (CSS), inputs

for this function are (𝑠𝑘 , 𝐹) and it outputs set of

signature set (ϕ) for 𝐹, which is ordered collection of

signature 𝜎𝑖 on 𝑀𝑖 . Where, ϕ = 𝜎1 𝜎2 𝜎𝑖
and the stored file on CSS is now denoted as 𝐹⋆= { 𝐹

, ϕ}. It also outputs the metadata the root of R of a

Merkel hash tree as shown in (Figure 1) and the

authentication tag 𝑡 = 𝑠𝑖𝑔𝑠𝑘 = (𝑕(𝑅)) of 𝐹⋆.

3) Data Integrity Verification Phase: This is an

interactive protocol for verifying the integrity of the

uploaded data on the audit cloud storage. Successful

retrievability of any data stored on cloud depends on

the integrity verification scheme. The CSS has to

provide the proof of retrievability, 𝑃(𝑝𝑘 , 𝐹⋆, 𝑡) and

CAS plays the role of verifier, 𝑉(𝑝𝑘 , 𝑡). At the end

of the protocol, 𝑉 𝑝𝑘 , 𝑡 =
1 𝑖𝑓 𝑇𝑟𝑢𝑒
0 𝑖𝑓 𝐹𝑎𝑙𝑠𝑒

 . The output

of this phase will be either 1 or 0 depending on the

result of verification.

4) Dynamic Data Update Phase: This is an additional

feature of our algorithm; it allows the user to

dynamically update the data files on cloud server.

http://en.wikipedia.org/wiki/Class_(computer_science)

Shalini J. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 5) May 2016, pp.62-67

www.ijera.com 66 | P a g e

The uploaded data 𝐹⋆on the CSS could be

dynamically modulated to 𝐹 ⋆ with tag 𝑡 . The CAS

plays the role of the verifier with input, the private

key 𝑠𝑘 , 𝑡 and an operation request “update” from the

client. At the end of the protocol, V outputs a file tag

of the updated file if CSS provides a valid proof for

the update.

Correctness of the bidirectional data integration and

security is verified by the following two steps:

 If 𝐹⋆, 𝑡 ⋍ 𝑈𝑝𝑙𝑜𝑎𝑑 (𝑠𝑘 , 𝐹), then Integrity

verify 𝑃 𝑝𝑘 , 𝐹⋆, 𝑡 ⋍ 𝑉 𝑝𝑘 , t = 1.

 If 𝐹⋆, 𝑡 ⋍ 𝑈𝑝𝑑𝑎𝑡𝑒 𝑃 𝑝𝑘 , 𝐹⋆, 𝑡 ⋍
𝑉𝑠𝑘,t, update, then Integrity verify 𝑃𝑝𝑘,𝐹⋆,𝑡
⋍𝑉𝑝𝑘,t=1.

The computational load of the above is determined

by the following two steps:

𝜎𝑖 = 𝐻(𝑀𝑖) ∙ 𝑢𝑗
𝑀𝑖𝑗

𝑠

𝑗=1

𝛼

𝜇𝑗 = 𝑣𝑖 ∙ 𝑀𝑖𝑗

(𝑖,𝑣)

𝑒(𝜎, 𝑔) = 𝑒 𝐻 𝑀𝑖
𝑣

(𝑖,𝑣)

∙ 𝑢𝑗
𝜇 𝑗

𝑠

𝑗=1

, 𝑣

𝛼

The computational load analysis is shown in

Fig 1. Our efficient implementation of the algorithm

ensures that the computational time of audit compute

and verification doesn’t linearly increase with the

size of the data file. The distribution is rather

sigmoidal and saturates for larger file sizes,

demonstrating the feasibility of our algorithm.

Figure 1: Computational load analysis

𝑦 = 𝑘0 +
𝑘1

 1 + exp⁡ −
(𝑥 − 𝑘2)

𝑘3

𝑦 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒, 𝑥 = 𝐹𝑖𝑙𝑒 𝑠𝑖𝑧𝑒

𝑘0 = 60.67, 𝑘1=564.2, 𝑘2 = 360.42, 𝑘3 = 132.15

VI. CONCLUSION
This paper proposes OPoR, a new proof of

retrievability for cloud storage, in which a

trustworthy audit server is introduced to pre-process

and upload the data on behalf of the clients. In OPoR,

the computation overhead for tag generation on the

client side is reduced significantly. The cloud audit

server also performs the data integrity verification or

updating the outsourced data upon the clients’

request. Besides, we construct another new PoR

scheme proven secure under a PoR model with

enhanced security against reset attack in the upload

phase. The scheme also supports public variability

and dynamic data operation simultaneously.

REFERENCES

[1]. G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D.

Song, “Provable data possession at untrusted

stores,” in CCS ’07: Proceedings of the 14th

ACM conference on Computer and

communications security. New York, NY,

USA: ACM, 2007, pp. 598–609.

[2]. A. Juels and B. S. K. Jr., “Pors: proofs of

retrievability for large files,” in CCS ’07:

Proceedings of the 14th ACM conference on

Computer and communications security.

New York, NY, USA: ACM, 2007, pp. 584–

597.

[3]. H. Shacham and B. Waters, “Compact

proofs of retrievabil-ity,” in ASIACRYPT

’08: Proceedings of the 14th International

Conference on the Theory and Application

of Cryptology and Information Security.

Berlin, Heidelberg: Springer-Verlag, 2008,

pp. 90–107.

[4]. K. D. Bowers, A. Juels, and A. Oprea,

“Proofs of retrievability: theory and

implementation,” in Proceedings of CCSW

2009. ACM, 2009, pp. 43–54.

[5]. M. Naor and G. N. Rothblum, “The

complexity of online memory checking,” J.

ACM, vol. 56, no. 1, pp. 2:1–2:46, Feb.

2009. [Online]. Available:

http://doi.acm.org/10.1145/1462153.

1462155

[6]. E.-C. Chang and J. Xu, “Remote integrity

check with dishonest storage server,” in

Proceedings of ESORICS 2008, volume

5283 of LNCS. Springer-Verlag, 2008, pp.

223–237.

[7]. M. A. Shah, R. Swaminathan, and M. Baker,

“Privacy-preserving audit and extraction of

digital contents,” Cryptology ePrint Archive,

Report 2008/186, 2008,

http://eprint.iacr.org/.

Shalini J. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN: 2248-9622, Vol. 6, Issue 5, (Part - 5) May 2016, pp.62-67

www.ijera.com 67 | P a g e

[8]. A. Oprea, M. K. Reiter, and K. Yang,

“Space-efficient block storage integrity,” in

In Proc. of NDSS 2005, 2005.

[9]. T. S. J. Schwarz and E. L. Miller, “Store,

forget, and check: Using algebraic

signatures to check remotely administered

storage,” in ICDCS ’06: Proceedings of the

26th IEEE International Conference on

Distributed Computing Systems.

Washington, DC, USA: IEEE Computer

Society, 2006.

[10]. L. V. M. Giuseppe Ateniese, Roberto Di

Pietro and G. Tsudik, “Scalable and efficient

provable data possession,” in International

Conference on Security and Privacy in

Communication Networks (SecureComm

2008), 2008.

[11]. C. Wang, Q. Wang, K. Ren, and W. Lou,

“Privacy-preserving public auditing for data

storage security in cloud computing,” in

INFOCOM, 2010, pp. 525–533.

[12]. Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu,

and S. S. Yau, “Dynamic audit services for

integrity verification of outsourced storages

in clouds,” in SAC, 2011, pp. 1550–1557.

[13]. Q. Zheng and S. Xu, “Fair and dynamic

proofs of retrievability,” in CODASPY,

2011, pp. 237–248.

[14]. J. Li, X. Chen, J. Li, C. Jia, J. Ma, and W.

Lou, “Fine-grained access control system

based on attribute-based encryption,” ES-

ORICS, 2013.

[15]. J. Li and K. Kim, “Hidden attribute-based

signatures without anonymity revocation,”

Information Sciences, vol. 180, no. 9, pp.

1681–1689, 2010.

[16]. J. Li, C. Jia, J. Li, and X. Chen,

“Outsourcing encryption of attribute-based

encryption with mapreduce,” ICICS, 2012.

[17]. X. Chen, J. Li, J. Ma, Q. Tang, and W. Lou,

“New algorithms of outsourcing modular

exponentiations,” ESORICS, pp. 541–556,

2012.

[18]. Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu,

“Cooperative provable data possession for

integrity verification in multicloud storage,”

IEEE Trans. Parallel Distrib. Syst., vol. 23,

no. 12, pp. 2231–2244, 2012.

[19]. H. Xiong, X. Zhang, D. Yao, X. Wu, and Y.

Wen, “Towards end-to-end secure content

storage and delivery with public cloud,” in

CODASPY, 2012, pp. 257–266.

[20]. Q. Zheng and S. Xu, “Secure and efficient

proof of storage with deduplication,” in

CODASPY, 2012, pp. 1–12.

[21]. C. Wang, Q. Wang, and K. Ren, “Ensuring

data storage security in cloud computing,” in

Proceedings of IWQoS 2009, Charleston,

South Carolina, USA, 2009.

[22]. C. Erway, A. Kupcu, C. Papamanthou, and

R. Tamassia, “Dy-namic provable data

possession,” Cryptology ePrint Archive,

Report 2008/432, 2008,

http://eprint.iacr.org/.

[23]. X. Lei, X. Liao, T. Huang, H. Li, and C. Hu,

“Outsourcing large matrix inversion

computation to a public cloud,,” in IEEE

Transactions on Cloud Computing,

[24]. 2013, pp. vol. 1, no. 1.

